Misokinesia

Misokinesia (2022) explores the long-term timbral effects of strictly organized spectra. It consists of six stases, generated by ten analog sine wave oscillators.


Golden

\begin{equation*} \frac{a+b}{a}= \frac {a}{b} \end{equation*}
\begin{equation*} \varphi = \frac{1+\sqrt{5}}{2} = 1.618 \end{equation*}
F0: 20.00 Hz, F0: 32.36 Hz, F0: 52.36 Hz, F0: 84.72 Hz, F0: 137.08 Hz, F0: 221.80 Hz, F0: 358.89 Hz, F0: 580.69 Hz, F0: 939.57 Hz, F10: 1520.26

Theodorus

\begin{equation*} \theta = \frac{f_n}{f_{n-1}} = \sqrt{3} = 1.73205 \end{equation*}
F0: 30.00 Hz, F0: 51.96 Hz, F0: 90.00 Hz, F0: 155.88 Hz, F0: 270.00 Hz, F0: 467.65 Hz, F0: 810.00 Hz, F0: 1402.96 Hz, F0: 2430.00 Hz, F10: 4208.88

Plastic

\begin{equation*} {\displaystyle x^{3}=x+1.} \end{equation*}
\begin{equation*} {\displaystyle \rho ={\sqrt[{3}]{\frac {9+{\sqrt {69}}}{18}}}+{\sqrt[{3}]{\frac {9-{\sqrt {69}}}{18}}} = 1.3247} \end{equation*}
F0: 40.00 Hz, F0: 52.99 Hz, F0: 70.20 Hz, F0: 92.99 Hz, F0: 123.18 Hz, F0: 163.18 Hz, F0: 216.17 Hz, F0: 286.37 Hz, F0: 379.36 Hz, F10: 502.54

SQRT2

\begin{equation*} \sqrt{2} = 1.414 \end{equation*}
F0: 25.00 Hz, F0: 35.36 Hz, F0: 50.00 Hz, F0: 70.71 Hz, F0: 100.00 Hz, F0: 141.42 Hz, F0: 200.00 Hz, F0: 282.84 Hz, F0: 400.00 Hz, F10: 565.69

PI

\begin{equation*} \pi = \frac{C}{d} = 3.14159 \end{equation*}
F0: 0.50 Hz, F0: 1.57 Hz, F0: 4.93 Hz, F0: 15.50 Hz, F0: 48.70 Hz, F0: 153.01 Hz, F0: 480.69 Hz, F0: 1510.15 Hz, F0: 4744.27 Hz, F10: 14904.55

12root2

\begin{equation*} \sqrt[12]{2} = = 1.05946 \end{equation*}
F0: 30.00 Hz, F0: 31.78 Hz, F0: 33.67 Hz, F0: 35.68 Hz, F0: 37.80 Hz, F0: 40.05 Hz, F0: 42.43 Hz, F0: 44.95 Hz, F0: 47.62 Hz, F10: 50.45

Leonhard

\begin{equation*} \lim_{n\to\infty} (1 + 1/n)^n \end{equation*}
F0: 2.00 Hz, F0: 5.44 Hz, F0: 14.78 Hz, F0: 40.17 Hz, F0: 109.20 Hz, F0: 296.83 Hz, F0: 806.86 Hz, F0: 2193.27 Hz, F0: 5961.92 Hz, F10: 16206.17]