Misokinesia
Misokinesia (2022) explores the long-term timbral effects of strictly organized spectra. It consists of six stases, generated by ten analog sine wave oscillators.
Golden
\begin{equation*}
\frac{a+b}{a}= \frac {a}{b}
\end{equation*}
\begin{equation*}
\varphi = \frac{1+\sqrt{5}}{2} = 1.618
\end{equation*}
Theodorus
\begin{equation*}
\theta = \frac{f_n}{f_{n-1}} = \sqrt{3} = 1.73205
\end{equation*}
Plastic
\begin{equation*}
{\displaystyle x^{3}=x+1.}
\end{equation*}
\begin{equation*}
{\displaystyle \rho ={\sqrt[{3}]{\frac {9+{\sqrt {69}}}{18}}}+{\sqrt[{3}]{\frac {9-{\sqrt {69}}}{18}}} = 1.3247}
\end{equation*}
SQRT2
\begin{equation*}
\sqrt{2} = 1.414
\end{equation*}
PI
\begin{equation*}
\pi = \frac{C}{d} = 3.14159
\end{equation*}
12root2
\begin{equation*}
\sqrt[12]{2} = = 1.05946
\end{equation*}
Leonhard
\begin{equation*}
\lim_{n\to\infty} (1 + 1/n)^n
\end{equation*}